Problème. On considère la fonction f définie sur \mathbb{R}_+ par $f(x) = \begin{cases} x e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

- **1. a)** Calculer $\lim_{x\to 0^+} f(x)$ et en déduire que f est continue à droite en 0.
- **b)** Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et en déduire que f est dérivable à droite en 0 et donner le nombre dérivé à droite de f en 0, noté $f'_d(0)$.
- **2. a)** Déterminer, pour tout réel x de \mathbb{R}_+^* , l'expression de f'(x) en fonction de x, où f' désgine la fonction dérivée de f.
 - **b)** Étudier le signe de f'(x) sur \mathbb{R}_+^* , puis donner les variations de f sur \mathbb{R}_+ .
- c) Calculer les limites de f aux bornes de son domaine de définition puis dresser le tableau de variations de f.
- **d)** Vérifier que, pour tout réel x de \mathbb{R}_+^* , on a $f''(x) = \frac{1}{x^3} e^{-1/x}$. La fonction f est-elle convexe ou concave sur \mathbb{R}_+^* ?
- **3. a)** Calculer $\lim_{u \to 0^+} \frac{e^{-u} 1}{u}$.
 - **b)** En déduire que $\lim_{x \to +\infty} (f(x) (x-1)) = 0$.
- c) On note (\mathscr{C}) la courbe représentative de f dans un repère orthonormé. Donner l'équation de la droite asymptote à (\mathscr{C}) au voisinage de $+\infty$ et tracer l'allure de (\mathscr{C}) .

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par la donnée de son premier terme $u_0=1$ et par la relation de récurrence $u_{n+1}=f(u_n)$, valable pour tout entier naturel n.

- **4. a)** Montrer par récurrence que, pour tout entier naturel n, on a $u_n > 0$.
 - **b)** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
 - **d)** Compléter les commandes suivantes pour qu'elles affichent le rang n à partir duquel $u_n \leq 10^{-3}$.

```
import numpy as np

n = 0
u = 1
while u > 0.001:
    u = ...
    n = ...
print(n)
```

- **5. a)** Montrer que, pour tout n entier naturel, on a la relation $\sum_{k=0}^{n} \frac{1}{u_k} = -\ln(u_{n+1})$.
 - **b)** En déduire que la série de terme général $\frac{1}{u_n}$ est divergente.