T.D. I - Études de fonctions

I - Inégalités

Exercice 1. Montrer que pour tout n entier naturel non nul,

$$\frac{1}{n+1+\frac{1}{n}} \leqslant \frac{1}{n+1}.$$

Exercice 2. Montrer que, pour tout $n \in \mathbb{N}^*$ et $x \in [0, 1]$,

$$0 \leqslant x^n \ln(1+x) \leqslant x^n \ln(2).$$

II - Étude de trinômes

Exercice 3. Soit $f: x \mapsto x^2 + x + 1$. Étudier le signe de f.

Exercice 4. Soit h définie pour tout x > 0 par $h(x) = \frac{x^2 - x + 1}{x^2}$. Déterminer, en fonction de x, le signe de h(x).

Exercice 5. Soit $f: x \mapsto \frac{-2x^2 - 2x + 1}{(x^2 + x + 1)^2}$. Déterminer, en fonction de x, le signe de f(x).

III - Étude de signes

Lvcée Ozenne

Exercice 6. Soit g la fonction définie pour tout x > 0 par $g(x) = 1 - \ln(x)$. Dresser le tableau de signes de g.

Exercice 7. Soit g la fonction définie pour tout $x \in]-1,+\infty[$ par $g(x) = \frac{x+2}{(1+x)^2}$. Dresser le tableau de signe de g.

Exercice 8. Soit g la fonction définie pour tout x>0 par $g(x)=\frac{-3+2\ln(x)}{x^3}$. Dresser le tableau de signes de g.

Exercice 9. Soit $f: x \mapsto \frac{e^x(e^x - 1)}{(1 + e^x)^3}$. Dresser le tableau de signes de f.

Exercice 10. Soit f définie par

$$f(t) = \begin{cases} e^{-t/2} - e^{-t} & \text{si } t \ge 0\\ 0 & \text{sinon} \end{cases}$$

Déterminer le signe de f.

IV - Calculs de dérivées

Exercice 11. Pour tout x réel, on pose $h(x) = \ln(1 + e^x)$. Déterminer la dérivée de h.

Exercice 12. On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{1+e^x}$.

- 1. Montrer que la dérivée de f vérifie pour tout x réel, $f'(x) = \frac{e^x}{(1+e^x)^2}$.
- **2.** En déduire le tableau de variations de f.
- **3.** Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse 0.
- **4.** Calculer la dérivée seconde f'' de f.
- **5.** Déterminer le(s) point(s) d'inflexion de f.

Exercice 13. Soit f la fonction définie pour tout x réel par $f(x) = x^3 - 3x^2 - \frac{9}{4}$.

- 1. Dresser le tableau de variations de f.
- **2.** Déterminer le nombre de réels λ tels que $f(\lambda) = 0$.

Exercice 14. Soit $f: x \mapsto \ln(x^2 + x + 1)$.

1. Déterminer la dérivée f' de f.

1

2. Déterminer la dérivée seconde f'' de f.

Exercice 15. Soit f la fonction définie pour tout $x \in]-1,+\infty[$ par $f(x)=x\ln(1+x).$

- 1. Déterminer la dérivée f' de f.
- **2.** Déterminer la dérivée seconde de f'' de f.

Exercice 16. Soit f définie pour tout $x \ge 1$ par $f(x) = \frac{\ln(x)}{x}$.

- 1. Déterminer la dérivée f' de f.
- **2.** Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse $e^{3/2}$.
- 3. Déterminer la dérivée f'' de f.

V - Calculs de limites

Exercice 17. On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{1+e^x}$.

- **1.** Déterminer $\lim_{x \to -\infty} f(x)$.
- **2.** Montrer que pour tout x réel $f(x) = \frac{1}{1 + e^{-x}}$ et en déduire $\lim_{x \to +\infty} f(x)$.
- 3. Interpréter graphiquement ce résultat?

Exercice 18. Soit f définie pour tout $x \in \mathbb{R}$ par $f(x) = \frac{x}{1+x+x^2}$.

- 1. Déterminer la limite de f en $+\infty$.
- 2. Déterminer la limite de f en $-\infty$.

Exercice 19. Soit h définie pour tout x > 0 par $h(x) = x - \ln(x) - \frac{1}{x}$.

- 1. Factoriser l'expression de h(x) par le réel $\frac{1}{x}$. En déduire $\lim_{x\to 0} h(x)$.
- 2. Factoriser l'expression de h(x) par le réel x. En déduire $\lim_{x\to +\infty} h(x)$.

Exercice 20. Soit g définie pour tout x > 0 par $g(x) = x - \ln(x)$.

- **1.** Calculer g(1).
- **2.** Calculer $\lim_{x\to 0} g(x)$.
- **3.** Calculer $\lim_{x \to +\infty} g(x)$.

Exercice 21. Soit $f: x \mapsto \ln(x^2 + x + 1)$.

- 1. Calculer $\lim_{x \to -\infty} f(x)$.
- **2.** Calculer $\lim_{x \to +\infty} f(x)$.

VI - Limites à droite / à gauche

Exercice 22. Soit n un entier naturel non nul et f_n définie par

$$f_n(t) = \begin{cases} nt^{n-1} & \text{si } t \in [0, 1] \\ 0 & \text{sinon} \end{cases}$$

- 1. Déterminer les limites à gauche et à droite de f_n en 0.
- **2.** Déterminer les limites à gauche et à droite de f_n en 1.

Exercice 23. Soit f définie par

$$f(x) = \begin{cases} \frac{x}{x+1} & \text{si } x \geqslant 0\\ 0 & \text{si } x < 0 \end{cases}$$

Déterminer les limites à gauche et à droite de f en 0.

Exercice 24. Soit f définie par

$$f(x) = \begin{cases} \frac{\ln(x)}{x^2} & \text{si } x \geqslant 1\\ 0 & \text{si } x < 1 \end{cases}$$

Montrer que la fonction f est continue sur \mathbb{R} .

Exercice 25. Soit k un réel non nul. On considère la fonction f définie sur $\mathbb R$ par

$$f(t) = \begin{cases} k \frac{t}{1+t} & \text{si } t \in [0,1] \\ 0 & \text{sinon} \end{cases}$$

Étudier la continuité de la fonction f sur \mathbb{R} .

ECT 2