■ Chapitre 15 ■

Équations différentielles linéaires

Notations.

- $\blacksquare I$ désigne un intervalle de \mathbb{R} non vide et non réduit à un point.
- $\blacksquare \mathbb{K}$ désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare n$ désigne un entier naturel non nul.

I. Systèmes différentiels

I.1 Théorème de Cauchy linéaire

Définition 1 (Système différentiel).

Soient $A: I \to \mathscr{M}_n(\mathbb{K})$ et $B: I \to \mathscr{M}_{n,1}(\mathbb{K})$ des fonctions continues. La fonction X est solution du système différentiel linéaire

$$X' = AX + B \tag{E}$$

si $X: I \to \mathcal{M}_{n,1}(\mathbb{K})$ est dérivable et

$$\forall t \in I, X'(t) = A(t)X(t) + B(t).$$

L'équation homogène associée au système (&) est l'équation :

$$X' = AX. (\mathscr{H})$$

Exercice 1.

- **1.** Montrer que si X est solution de l'équation X' = AX + B, alors X est de classe \mathscr{C}^1 sur I.
- **2.** Soient \overrightarrow{B} et \overrightarrow{E} deux vecteurs de même direction constante et $\mathscr{B}=(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ une base orthonormée directe telle que \overrightarrow{i} et \overrightarrow{B} soient colinéaires. Exprimer le système différentiel associé à l'équation différentielle d'une particule soumise à une force de LORENTZ, i.e. telle que $m\overrightarrow{d}=q\overrightarrow{v}\wedge\overrightarrow{B}+q\overrightarrow{E}$.

Théorème 1 (Théorème de CAUCHY linéaire, Admis).

Soient $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathcal{M}_{n,1}(\mathbb{K})$ deux fonctions continues. L'équation différentielle linéaire X' = AX + B possède des solutions sur I. De plus, pour tout $t_0 \in I$ et $X_0 \in \mathcal{M}_{n,1}(\mathbb{K})$, le problème de Cauchy :

$$\begin{cases} X'(t) = A(t)X(t) + B(t), \forall t \in I, \\ X(t_0) = X_0 \end{cases}$$

possède une unique solution.

Exercice 2.

- 1. Montrer que si X est une solution non nulle de l'équation homogène (\mathcal{H}) , alors X ne s'annule en aucun point de I.
- **2.** Montrer que si X_1 et X_2 sont deux solutions distinctes de l'équation différentielle (\mathscr{E}) , alors pour tout $t \in I$, $X_1(t) \neq X_2(t)$.
- **3.** Soit $\lambda \in \mathbb{K}$. Déterminer l'unique solution du système différentiel linéaire $X' = \lambda X$ satisfaisant $X(0) = {}^{t}(1 \cdots 1)$.

I.2 Ensemble des solutions

Théorème 2 (Ensemble des solutions).

Notons $\mathscr{S}_{\mathscr{H}}$ l'ensemble des solutions de l'équation homogène (\mathscr{H}) et y_p une solution du système différentiel (\mathscr{E}) . Alors, $\mathscr{S}_{\mathscr{H}}$ est un espace vectoriel et l'ensemble \mathscr{S} des solutions du système différentiel (\mathscr{E}) s'écrit :

$$\mathscr{S} = y_p + \mathscr{S}_{\mathscr{H}} = \{y_p + y, y \in \mathscr{S}_{\mathscr{H}}\}.$$

Théorème 3 (Dimension de l'espace des solutions de l'équation homogène).

Pour tout $t_0 \in I$, l'application

$$\Phi_{t_0}: \left\{ \begin{array}{ccc} \mathscr{S}_{\mathscr{H}} & \to & \mathscr{M}_{n,1}(\mathbb{K}) \\ X & \mapsto & X(t_0) \end{array} \right.$$

est un isomorphisme. En particulier, $\mathscr{S}_{\mathscr{H}}$ est de dimension finie égale à n.

Exercice 3.

- **1.** Résoudre le système différentiel $\begin{cases} x' = -y \\ y' = x \end{cases}$
- 2. Résoudre le système différentiel associé à une particule soumise à une force de LORENTZ lorsque le champ électrique est nul.

Propriété 1 (Principe de superposition).

Soient B_1 , B_2 des fonctions continues sur I à valeurs dans $\mathcal{M}_{n,1}(\mathbb{K})$ et $B = B_1 + B_2$. Si X_1 (resp. X_2) est solution du système différentiel $X' = AX + B_1$ (resp. $X' = AX + B_2$), alors $X_1 + X_2$ est solution du système différentiel X' = AX + B.

II. Équations différentielles scalaires d'ordre 1, 2

II.1 Équations scalaires d'ordre 1

Soient a et b deux fonctions continues de I dans \mathbb{K} . On étudie l'équation différentielle

$$y' + ay = b (\mathcal{E}_1)$$

Théorème 4.

O₀

Soit $t_0\in I$. On note $\alpha:t\mapsto \int_{t_0}^t a(s)\,\mathrm{d} s$ une primitive de a. L'ensemble des solutions de l'équation différentielle $(\mathscr E_1)$ est :

$$\left\{ t \mapsto e^{-\alpha(t)} \cdot \left(\lambda + \int_{t_0}^t b(s) e^{\alpha(s)} ds \right), \lambda \in \mathbb{K} \right\}.$$

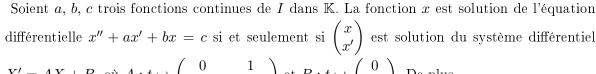
Si $t \mapsto b(t)$ est de la forme	chercher un solution de la forme
λ constante	μ constante
$P_n(t)$ polynôme de degré n	$Q_n(t)$ polynôme de degré n
$\lambda \cos(\alpha t) + \mu \sin(\alpha t), (\lambda, \mu) \in \mathbb{K}^2$	$\lambda_1 \cos(\alpha t) + \mu_1 \sin(\alpha t), (\lambda_1, \mu_1) \in \mathbb{K}^2$
$\lambda e^{\alpha t}, \lambda \in \mathbb{K}, \alpha \neq -a$	$\mu e^{\alpha t}, \mu \in \mathbb{K}$
$\lambda e^{-at}, \lambda \in \mathbb{K}$	$\mu t e^{-at}, \ \mu \in \mathbb{K}$

Exercice 4.

- **1.** Résoudre, sur \mathbb{R} , l'équation différentielle $y' + y = \cosh$.
- **2.** Résoudre sur \mathbb{R} l'équation différentielle ty' = 2y + 1.

II.2 Équations scalaires d'ordre 2

Théorème 5.



$$X' = AX + B$$
, où $A: t \mapsto \begin{pmatrix} 0 & 1 \\ -b(t) & -a(t) \end{pmatrix}$ et $B: t \mapsto \begin{pmatrix} 0 \\ c(t) \end{pmatrix}$. De plus,

- (i). l'ensemble des solutions de l'équation homogène x'' + a(t)x' + b(t)x = 0 est un sousespace vectoriel de $\mathscr{C}^2(I,\mathbb{K})$ de dimension 2.
- (ii). Pour tout $(t_0, a_0, a_1) \in I \times \mathbb{K}^2$, il existe une unique solution de l'équation différentielle qui satisfait $y(t_0) = a_0$ et $y'(t_0) = a_1$.

Exercice 5.

- 1. Écrire l'équation différentielle $x'' + t^3x' + \cosh(t)x = \sinh(t)$ sous forme d'un système différentiel d'ordre 1.
- **2.** On considère l'équation différentielle $(1+t^2)x'' + 4tx' + 2x = 0$ sur \mathbb{R} .
 - a) Déterminer la dimension de l'espace vectoriel des solutions.
- b) Déterminer des solutions de l'équation développables en séries entières puis l'ensemble des solutions de l'équation.

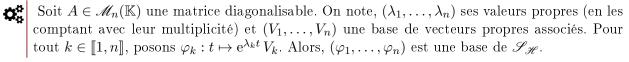
III. Équations différentielles linéaires à coefficients constants

III.1 Système homogène à coefficients constants

Propriété 2 (Sous-espaces propres).

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $\lambda \in \operatorname{Sp}(A)$ une valeur propre de A et X_0 un vecteur propre associé. Alors, $X: t \mapsto e^{\lambda t} X_0$ est solution du système différentiel X' = AX.

Théorème 6 (Cas diagonalisable).



Exercice 6.

- 1. On suppose que A est diagonalisable et que toutes ses valeurs propres sont de partie réelle strictement négative. Déterminer le comportement asymptotique des solutions de X' = AX.
- **2.** Résoudre le système différentiel $X' = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} X$.
- 3. Déterminer les solutions à valeurs réelles du système différentiel $X' = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -1 & 3 \\ 0 & 0 & 1 \end{pmatrix} X$.
- **4.** Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & -5 \\ 0 & 1 & 5 \end{pmatrix}$. Montrer qu'il existe une matrice P telle que $P^{-1}AP = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ puis en déduire l'ensemble des solutions de X' = AX.

III.2 Équations scalaires d'ordre 2 à coefficients constants

Soit $(a, b, c) \in \mathbb{K}^3$ tel que $a \neq 0$. On étudie l'équation différentielle

$$ay'' + by' + cy = d. (\mathcal{E}_2)$$

Théorème 7.

L'équation caractéristique associée à l'équation (\mathscr{E}_2) est

$$ar^2 + br + c = 0. (EC_2)$$

On note r_1 et r_2 les solutions de l'équation caractéristique (EC_2) .

$$\mathscr{S}_{H} = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \lambda_{1}y_{1}(t) + \lambda_{2}y_{2}(t) \end{array}, \, \lambda_{1}, \, \lambda_{2} \in \mathbb{C} \right\}.$$

- (i). Si $r_1 \neq r_2$ et $(r_1, r_2) \in \mathbb{K}^2$, $y_1 : t \mapsto e^{r_1 t}$, $y_2 : t \mapsto e^{r_2 t}$.
- $(ii). \ \ {\rm Si} \ r_1=r_2 \ ({\rm notons} \ r_0 \ {\rm cette} \ {\rm valeur} \ {\rm commune}), \ y_1 \ : \ t\mapsto {\rm e}^{r_0t}, \ y_2 \ : \ t\mapsto t\, {\rm e}^{r_0t}.$
- (iii). Si $\mathbb{K} = \mathbb{R}$, $r_1 \neq r_2$ et $r_1 = \alpha + i\beta \notin \mathbb{R}$, alors $y_1 : t \mapsto e^{\alpha t} \cos(\beta t)$, $y_2 : t \mapsto e^{\alpha t} \sin(\beta t)$.

Exercice 7.

- 1. Résoudre l'équation différentielle y'' + 2y' + 2y = 0.
- **2.** Soient ω_0 et Q deux réels strictement positifs. Déterminer l'ensemble des solutions réelles de l'équation différentielle $y'' + \frac{\omega_0}{Q}y' + \omega_0^2 y = 0$.

Si $d(t)$ est de la forme	\dots et $(EC_2)\dots$	solution particulière
$P_n(t) e^{\alpha t}, deg(P_n) = n$	α non racine	$Q_n(t) e^{\alpha t}, deg(Q_n) = n$
$P_n(t) e^{\alpha t}, deg(P_n) = n$	α racine simple	$t \cdot Q_n(t) e^{\alpha t}, deg(Q_n) = n$
$P_n(t) e^{\alpha t}, deg(P_n) = n$	α racine double	$t^2 \cdot Q_n(t) e^{\alpha t}, deg(Q_n) = n$

Exercice 8. Déterminer l'ensemble des solutions de l'équation différentielle :

1.
$$y'' - 4y' + 3y = (2t + 1) e^t$$
.

2.
$$y'' - 4y' + 3y = \sin(2t)$$
.

Autour de y'' + q(x)y = 0

Exercice 9. Soit q une fonction continue sur \mathbb{R} . On considère l'équation différentielle (E):

$$y'' + q(x)y = 0.$$

- **1. Wronskien et ensemble des solutions.** Étant données deux fonctions dérivables f et g, on note $W(f,g) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = fg' f'g$.
- a) Montrer que si y_1 et y_2 sont solutions de (E), alors $W(y_1, y_2)$ est une fonction constante. On désigne par y_1 et y_2 les solutions de l'équation (E) qui satisfont

$$\begin{cases} y_1(0) = 1 & , y_1'(0) = 0, \\ y_2(0) = 0 & , y_2'(0) = 1. \end{cases}$$

- **b)** Déterminer la valeur de $W(y_1, y_2)$.
- c) Existe-t-il un réel t_0 tel que $y_1(t_0) = y_2(t_0) = 0$?
- **d)** Montrer que l'ensemble des solutions de (E) est Vect $\{y_1, y_2\}$.
- e) Montrer que, si q est paire, alors y_1 est paire et y_2 est impaire.
- **2. Solutions non bornées.** On suppose que la fonction q est intégrable.
- a) Montrer que si y est une solution de (E) bornée, alors y' admet une limite finie en $+\infty$, puis montrer que cette limite est forcément nulle.
 - **b)** Montrer que (E) admet nécessairement une solution non bornée.
- **3. Solutions bornées.** On suppose qu'il existe une fonction a de classe \mathscr{C}^1 et intégrable sur \mathbb{R}_+ telle que q=1+a. On note f une solution de (E).
 - a) A-t-on nécessairement $\lim_{x \to +\infty} a(x) = 0$?
- **b)** On définit sur \mathbb{R}_+ la fonction $g: x \mapsto f(x) + \int_0^x \sin(x-t)a(t)f(t) dt$. Montrer que g est de classe \mathscr{C}^2 sur \mathbb{R}^+ , puis que g'' + g = 0.
 - **c)** Montrer qu'il existe $c \in \mathbb{R}_+$ tel que : $\forall x \in \mathbb{R}_+, |f(x)| \leq c + \int_0^x |a(t)| |f(t)| dt$.
 - **d)** Montrer que toutes les solutions de y'' + (1+a)y = 0 sont bornées.

Programme officiel (PCSI)

Techniques fondamentales de calcul en analyse - C - Primitives et équations différentielles linéaires (p. 11)

Programme officiel (PSI)

Équations différentielles linéaires (p. 25)

Mathématiciens

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux). LORENTZ Hendrik Antoon (18 juil. 1853 à Arnhem-4 fév. 1928 à Haarlem).