STANISLAS Compléments

Calculs de primitives

PSI

2021-2022

Dans chacun des exercices, vous déterminerez une primitive des fonctions proposées en précisant leur ensemble de définition. Les primitives classiques doivent pouvoir être retrouvées rapidement.

Exercice 1. (Fonctions usuelles) Soit a un réel strictement positif.

1.
$$f_1(x) = \frac{x^3 + 5x^2 - 4}{x^2}$$
.

2.
$$f_2(x) = \cot(x)$$
.

3.
$$f_3(x) = \coth(x)$$
.

4.
$$f_4(x) = \frac{1}{a^2 + x^2}$$
.

5.
$$f_5(x) = \frac{1}{a^2 - x^2}$$

6.
$$f_6(x) = \frac{1}{\sqrt{a^2 - x^2}}$$

7.
$$f_7(x) = \frac{1}{9+x^2}$$

7.
$$f_7(x) = \frac{1}{9+x^2}$$
.
8. $f_8(x) = \frac{1}{\sqrt{25-16x^2}}$.

I. Techniques élémentaires

Exercice 2. $(u' \cdot f'(u))$

1.
$$f_1(x) = \frac{8x^2}{(x^3+2)^3}$$
.

2.
$$f_2(x) = x\sqrt{1-2x^2}$$
.

3.
$$f_3(x) = (e^x + 1)^3 e^x$$
.

4.
$$f_4(x) = \frac{\sin(x)}{3+\sin^2(x)}$$
.

5.
$$f_5(x) = \frac{x^2}{\sqrt{1-x^6}}$$

6.
$$f_6(x) = \frac{x}{x^4+3}$$

7.
$$f_7(x) = \frac{1}{x^2 + 10x + 30}$$

Exercice 3. (Changements de variable)

1.
$$f_1(x) = \frac{1}{e^x + 1}$$
.

2.
$$f_2(x) = \sqrt{e^x - 1}$$

3.
$$f_3(x) = \frac{1}{x^{\frac{3}{2}+1}}$$
.

Exercice 4. (Intégrations par parties)

1.
$$f_1(x) = \arcsin(x)$$
.

2.
$$f_2(x) = x^2 \ln(x)$$
.

3.
$$f_3(x) = x\sqrt{1+x}$$
.

4.
$$f_4(x) = x \tan^2(x)$$
.

5.
$$f_5(x) = \ln(x^2 + 2)$$
.

6.
$$f_6(x) = \sqrt{1+x} \ln(x)$$
.

7.
$$f_7(x) = x \arctan^2(x)$$
.

8.
$$f_8(x) = e^{\arccos(x)}$$

II. Fractions rationnelles

Pour calculer la primitive d'une fraction rationnelle, on calcule sa décomposition en éléments simples (cette notion n'est pas au programme et il suffit de suivre les indications).

Primitives de la forme $\int \frac{dx}{(x-a)^n}$.

* Si
$$n = 1$$
, alors $\int \frac{\mathrm{d}x}{x - a} = \ln|x - a|$.

* Si
$$n \ge 2$$
, alors $\int \frac{dx}{(x-a)^n} = \frac{1}{(1-n)(x-a)^{n-1}}$

Primitives de la forme $\int \frac{ax+b}{x^2+nx+a} dx = \frac{a}{2} \int \frac{2x+p}{x^2+nx+a} dx +$

$$\left(b-\frac{ap}{2}\right)\int \frac{\mathbf{d}x}{\left(x+\frac{p}{2}\right)^2+\frac{4q-p^2}{4}}.$$

- * Si $4q p^2 > 0$, on utilise la fonction arctangente.
- * Si $4q p^2 < 0$, on utilise la fonction logarithme.

Exercice 5. (Fractions rationnelles)

1.
$$f_1(x) = \frac{x+2}{x+1}$$
.

2.
$$f_2(x) = \frac{x^2 + 2x}{(x+1)^2}$$
.

3.
$$f_3(x) = \frac{1}{x^2 - 9}$$
.

4.
$$f_4(x) = \frac{1}{x^3+1}$$
. $\frac{a}{x+1} + \frac{bx+c}{x^2-x+1}$.

$$x+1$$
 x^2-x+1
5. $f_5(x) = \frac{x^2-3x-1}{x^3+x^2-2x}$

$$\frac{a}{x} + \frac{b}{x+2} + \frac{c}{x-1}$$
.

6.
$$f_6(x) = \frac{2x^3}{(x^2+1)^2}$$
. $\frac{ax+b}{x^2+1} + \frac{cx+d}{(x^2+1)^2}$.

$$\frac{ax+b}{x^2+1} + \frac{cx+d}{(x^2+1)^2}$$

7.
$$f_7(x) = \frac{2x-7}{x^2+9}$$
.

8.
$$f_8(x) = \frac{x+1}{x^2-4x+8}$$
.

III. Polynômes, Exponentielles et Trigonométrie

Pour calculer une primitive de la forme $\int P(x) e^{\alpha x} \cos(\omega x) dx$, on utilise l'écriture complexe de la fonction cosinus puis on cherche une solution sous la forme polynôme / exponentielle. Ceci revient à chercher des primitives de la forme $\int P(x) e^{ax} dx$ avec $a \in \mathbb{C}$.

- * Si a = 0, on intègre un polynôme.
- * Si $a \neq 0$, on cherche une primitive sous la forme $Q(x) e^{ax}$, où Q est un polynôme de même degré que P. Ainsi, par dérivation on obtient la relation aQ(x) + Q'(x) = P(x).

Compléments VI PSI

Exercice 6. Soit $n \in \mathbb{N}$.

1.
$$f_1(x) = x \cos x$$
.

3.
$$f_3(x) = \sinh x \cos x$$
.

2.
$$f_2(x) = x^2 e^{-3x}$$
.

4.
$$f_4(x) = x^n e^x$$

IV. Fonctions rationnelles en cosinus et sinus

Fonctions polynomiales des fonctions trigonométriques. On utilise les formules de linéarisation.

Exercice 7. (Fonctions trigonométriques) Soient a, b tels que $ab \neq 0$ et $a^{2} \neq b^{2}$.

1.
$$f_1(x) = \sin(x)\sin(3x)$$
.

3.
$$f_3(x) = \cos(ax)\cos(bx)$$
.

2.
$$f_2(x) = \sin^3(x)$$
.

Règles de Bioche : $\int F(\cos x, \sin x) dx$.

On se ramène au calcul d'une primitive de fraction rationnelle.

- (i). On pose $\omega(x) = F(\cos x, \sin x) dx$.
 - * Si $\omega(-x) = \omega(x)$, alors on effectue le changement de variable
 - * Si $\omega(\pi-x) = \omega(x)$, alors on effectue le changement de variable $t = \sin x$.
 - * Si $\omega(\pi+x)=\omega(x)$, alors on effectue le changement de variable $t = \tan x$.
- (ii). En dernier recours, on effectue le changement de variable t= $\tan \frac{x}{2}$.

Exercice 8. (Règles de Bioche)

1.
$$f_1(x) = \frac{1}{\cos x + 2}$$
.

3.
$$f_3(x) = \frac{\tan x}{1+\sin^2 x}$$

2.
$$f_2(x) = \frac{\sin^3 x}{2 + \cos x}$$

3.
$$f_3(x) = \frac{\tan x}{1+\sin^2 x}$$
.
4. $f_4(x) = \frac{4\sin x}{(1+\cos x)(3+\cos 2x)}$.

V. Fractions rationnelles et Exponentielle

Effectuer le changement de variable $t = e^x$. En présence de fonctions cosh ou sinh qui interviennent, on peut les remplacer par leur forme exponentielle.

Exercice 9.

1.
$$f_1(x) = \frac{1}{1+\sinh x + 2\cosh x}$$
.

2.
$$f_2(x) = \frac{1}{\sinh x}$$
.

VI. Fractions rationnelles et Radicaux

Primitives de la forme $\int F\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$.

Effectuer le changement de variable $t = \sqrt[n]{\frac{ax+b}{cx+d}}$

Exercice 10.

1.
$$f_1(x) = \sqrt{\frac{1+x}{1-x}}$$
.

2.
$$f_2(x) = \frac{\sqrt{1+x} - \sqrt[4]{x+1}}{\sqrt{1+x} + \sqrt[4]{x+1}}$$

VII. Primitives de la forme $\int F\left(x, \sqrt{ax^2 + bx + c}\right) dx$

On écrit le trinôme sous forme canonique $a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}$.

- * Si $a = \alpha^2$ et $c \frac{b^2}{4a} = \beta^2$, alors on effectue le changement de variable $x = \frac{\beta}{\alpha} \sinh t - \frac{b}{a}$, pour pouvoir utiliser la relation $1 + \sinh^2 = \cosh^2$.
- * Si $a=\alpha^2$ et $c-\frac{b^2}{4a}=-\beta^2$, alors on effectue le changement de variable $x = \frac{\beta}{\alpha} \cosh t - \frac{b}{a}$, pour pouvoir utiliser la relation $sinh^2 = \cosh^2 - 1$
- * Si $a = -\alpha^2$ et $c \frac{b^2}{4a} = \beta^2$, alors on effectue le changement de variable $x = \frac{\beta}{\alpha} \sin t \frac{b}{a}$, pour pouvoir utiliser la relation $\sin^2 = \frac{\beta}{\alpha} \sin t \frac{b}{a}$

Les deux premières méthodes nécessitent la connaissance des fonctions Argsh et Argch.

Exercice 11.

1.
$$f_1(x) = \sqrt{x^2 - 1}$$
.

3.
$$f_3(x) = \sqrt{2x^2 - 3x + 5}$$
.
4. $f_4(x) = \frac{x}{\sqrt{2x - x^2}}$.

2.
$$f_2(x) = x^2 \sqrt{1 - x^2}$$
.

4.
$$f_4(x) = \frac{x}{\sqrt{2x-x^2}}$$